

PHEN-ITALY INFRASTRUCTURES/INSTALLATIONS

Installation name	ALSIA PhenoLab 4.0
Installation Location	Metaponto di Bernalda (MT)
Installation Location (GPS coord.)	40.392115466950045, 16.787614235114425
Installation Category	 High Throughput Phenotyping Controlled Conditions, Open Field, Growth Chamber
Traits analysed	 Above ground Below ground
Environmental Manipulation applicable	 Water Fitonutrients concentration
Stress applicable	 Drought Salt Biotic stress Viruses Bacteria
Max Capacity	494 pots for plant imaging under greenhouse conditions
Status	Operational
Trait measurements	 Growth Structure and architecture Root properties WUE Root architecture Stress indices Colout indexes
Equipment and sensors	 RGB camera IR Multispectral Fluorescence LiCOR Porometer
References	Donatella Danzi, et al., 2019. Can High Throughput Phenoty ping Help Food Security in the Mediterranean Area? Front. Plant Sci.,25 https://doi.org/10.3389/fpls.2019.00015 Briglia N et al.,2019. Drought phenotyping in Vitis vinifera using

	RGB and NIR imaging. Scientia Horticulturae DOI: 10.1016/j.scienta.2019.108555 Janni M, et al. In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics. 2019 Nov 27;2019:6168209. doi: 10.34133/2019/6168209. Briglia N, et al. Image-Based Assessment of Drought Response in Grapevines. Front Plant Sci. 2020 May 15;11:595. doi: 10.3389/fpls.2020.00595. González Guzmán M, et al. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol Plant. 2022 Jan;174(1):e13547. doi: 10.1111/ppl.13547. Cardellicchio A, et al. Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors, Computers and Electronics in Agriculture.
Description of the infrastructure/installation Contact person	https://doi.org/10.1016/j.compag.2023.107757 The core of platform is based on a plant-to-sensor Lemnatech Scanalyzer 3D system equipped with a conveyor system accommodating 494 pots (2,5 I) carried by RFID-tagged carts, 4 imaging sensor chambers (NIR, RGB, Flu, NIR Roots), an automatic (fert)-irrigation station with a scale for evapotranspiration measurement of single pots. The platform is located in a glasshouse for semi controlled conditions, and environmental variable are measured via a network of nine sensor nodes (PAR, T, RH, CO2). Experimental open fields with agro-meteo stations are available in a network of seven experimental farms located in the most important agricultural areas of Basilicata Region. Angelo Petrozza <u>angelo.petrozza@alsia.it</u>
URL	https://www.alsia.it/opencms/opencms/Servizi/dettaglio/Fenomica- Vegetale/