Field Phenotyping: affordable solutions

international initiatives
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Why affordable?

'+ The required tools and resources for phenotyping
D will need to become universal, and the most

\y realistic way to achieve that is through low-cost,

= open-source technology

« As more researchers have access to the tools and 4
can test and evaluate them within the context of

their respective research programs, this will <

&.; ¥

determine if expenditure on these resources was
warranted.
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Why affordable?

SELECTION INTENSITY
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Araus, J.L., et al. 2018. Phenotyping: New Crop Breeding Frontier.
Encyclopedia of Sustainability Science and Technology. Springer
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Outline

Affordable Phenotyping
— Sensors
— Platforms
— Environmental characterization
— Data curation and processing
— Data integration
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Affordable Phenotyping

— Sensors



Different categories of sensors
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Canopy senescence — visual score

Measurement:

- score from 0-10, divide the % of estimated
total leaf area that is dead by 10

- Initiation & rate of canopy senescence

1 (10%) 3 (30%) 5 (50%) 7 (70%) 9 (90%)

M. Banziger, CIMMYT



TYPES OF LOW COST SENSORS

Araus & Kefauver, 2018 Curr. Opin Plant Biol.



Spectroradiometrical sensors



DISPLAY SCREEN

New!
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Other multispectral sensors
avalilable with 4-6 sensors (at 500-
1000 USD per sensor band)

» Tetracam 4 band ADC, ADC lite, and microMCA 4 or 6,
customizable filters from 400-1000 nm, with or without
ILS, optional thermal camera integration, and GPS units
available separately.

» HiPhen AirPhen 6 sensor customizable bandwidth filters
multispectral sensor with GPS and optional thermal
camera integration.

» AIRINOV Multispec 4C NDVI-NDRE and NDVI-PRI 4 band
sensors with GPS and ILS sensors integrated

» Parrot Sequoia 4 band + RGB sensor with integrate ILS,
GPS and IMU
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MultispeQ v2.0

The MultispeQ combines the functionality of a handheld fluorometer, a chlorophyll meter, and a bench-top spectrometer
into one low cost, modifiable tool that brings lab quality measurements to field applications. Measure photosynthetic
phenotypes in real field conditions, identify biotic and abiotic stresses in plants or algae, and collect thousands of data

points around the world using collaborators in the PhotosynQ network. The MultispeQ is what you wanted all your other

tools to be - affordable, powerful, modifiable, and collaborative by design.
[ - - + |

Software

The PhotosynQ mobile and desktop apps
allow users to collect high throughput
phenotyping data in the field and connect
that data to our sophisticated data
explorer. Use the data explorer to view,
map, analyze and share collaborative

research data quickly and easily.

PhotosynQ [ hitps:/photosyng.org/



Thermal sensors



Transpiration as a cooling system: IR thermometry
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Figure 6.1. Biological (physiological| and environmental factors affecting canopy temperature (Adapted from Reynolds et al,, 2001).

Reynolds, Pask & Mullan 2012






Pictures taken from the camera using the thermal plus RGB
fusion, thermal temp point measurements over RGB, and plain
thermal camera modes




RGB cameras



Disease Monitoring

Visual score = 3

Visual score = 4

Seedling Counting / Early Vigor
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Araus & Kefauver, 2018 Curr. Opin Plant Biol.



N fertilization treatments in maize
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Fig. 1 — Wheat leaves damaged by yellow rust during 2012-2013.
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Canopy cover and senescence

Table 2. Broad-sense heritabilitie (H?) and mean of canopy senescence and its genetic correlation

with grain yield in three maize hybrid trials (composed of 50 varieties each) evaluated under low soil
nitrogen at Harare, Zimbabwe. (Data are means of 450 plots).

Aerial Imaging Visual Assessment
Senl Sen2 Sen3
Heritahil.it}? 0.285 0.585 0.500
Mean 12.731 28.6664 61.944
CGenetic correlation with yield —0.179 0.006 —0.10
n Replicates 3 3 3

** = p < 001, Sen. = canopy senescence. Sen. index (aerial imaging) corresponds to Sen3 (visual assessment).

a-Vegetative stage (42 DAS) b-Post-flowering stage (75 DAS) e-Late grain filling stage (96 DAS)
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High-Throughput Phenotyping of Canopy Cover and
Senescence in Maize Field Trials Using Aerial Digital
Canopy Imaging
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RGB images: plant shape

FIGURE 7 | Quantification of rice drought response under field conditions. (A) Dynamics of PAR at five time points. (B) Dynamics of GPAR at five time points. The
markers and the bars in each line represent the mean value and standard deviation across the accessions, respectively. (C) A drought resistant accession and a

drought sensitive accession at five time points. C, before stress; D1, mild drought stress; D2, moderate drought stress; D3, severe drought stress, and R: after

renydration,
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RGB images: plant height

Table 3 Performance comparison of each sensing technique

Sensors Carriers Performance
Resolution Equipment Accuracy compared with the ground truth Data processing cost
cost
per unit
LIDAR-Lite v2 sensor Ground vehicle Low, only reflect <5100 Low, due to the low sampling frequency Low
Ultrasonic sensor I-dimensional meas-  ¢300_$800  High
urements -
Kinect camera ~02MP <5300 High, within the optimal measuring range
DSLR cameras ~18MP >$800  —— High, due to
Digital cameras ~ UAV ~12 MP <s600 | r=0.73 photogrammetry
processing
e it opl R IHE AT 80363 Plant Methods
Field-based high-throughput @

phenotyping of plant height in sorghum using
different sensing technologies



RGB images: ear characteristics
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RGB images: ear characteristics

Table 2 Broad-sense heritabilities (H%) and means for grain yield and kernel/ear attributes estimated through imaging for six maize trials with three replicates
evaluated under low soil nitrogen at Harare, Zimbabwe

Trial Number of Measured Broad-sense heritability (H?)
Grain
yield(Mg ha=") Kernel attributes Ear attributes
Entries Year Visible Mean Mean Total area  Meanarea Mean Total Total Number Mean Mean width
(hybrids) Kernel width [cm) length lem?) {cm) perimeter Number Weight per plot length (em)
Number {em) {em) per plot (g plot") {em)
EHYE1 746 50 2007 0591 0.374 0.725 0A15 0439 071 0842 0374 0301 0.781 i 0507
EHYB1747 50 2017 059 0619 0657 0.761 0513 0722 0765 0619 0492 0,358 0728 0634
EHYB1748 50 2017 0595 0624 0,709 0,624 0.687 0.69 0569 0597 0,700 0.746 0539 0278
IHYB1747 50 2017 0599 0721 0.737 0423 0.607 0735 0721 0.442 0515 0652 0.504
LHYB1619 55 2016 0146 050 0.904 0,238 097 054 0320 0.647 0560 0730
LHYB1617 55 2016 0137 0314 0,798 0,384 0782 0.314 0,287 0279 0239
Mean 0444 0532 0.755 0775 0.447 0.738 0527 0423 0570 0482
Mean
EHYB1746 50 20017 402 45100 0.36 066 760.64 017 185 924327 3001.43 24.51 1495 481
EHYB1747 50 20017 548 533780 0,35 065 85842 016 181 1064106 345216 2822 14,71 470
EHYB1748 50 207 280 478187 0.36 067 801.47 014 1.91 800,89 3237.06 2788 1442 466
IHYB1747 50 2017 520 539855 0.3 0.63 24.45 015 1.77 11065.71 331840 28.05 14,34 464
LHYB1619 55 2006 224 378983 042 0.76 852,04 023 23 7766,21 241555 2177 1643 523
LHYB1&17 55 2016 136 315116 0.35 060 43525 014 2.02 442099 112673 2318 1117 393
EHYE early hybrid trial, IH¥B intermediate hybrid trial, LHYB late hybrid trial
High-throughput method for ear &

phenotyping and kernel weight estimation
in maize using ear digital imaging



Algorithm counting

Algorihm counting
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RGB images have a

more limited spectral
range




A matter of resolution

« Sometimes high spectral resolution (such as the infrared
and thermal images) can be substituted for high spatial
resolution with equal results.

* For example, by digital RGB conventional photography,
which has a very high spatial resolution (mm).

* Or even better with conventional RGB photography at
high temporal resolution (e.g. weekly).
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Traits

Tools

RGB

LIDAR

Thermal

TRL
(Technological
Readdiness Level)

Plant density @ emergence

Cover fraction

Plant / Canopy height

Ear density

Fruit / Inflorescence size

Grain number and size

Leaf / Plant glaucousness

Phenology (e.g. heading, anthesis...)

Lodging

Weed infestation

Diseases

Vegetation Index monitoring

Green Area Index (GAI)

Senescense

Fraction of intercepted radiation

Leaf orientation

Leaf rolling

Chlorophyll content

Leaf / Canopy temperature

Leaf / Canopy chlorophyll fluorescense

1/2|3[(4|5|6|7|8




Different categories of sensors
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Near-Infrared Reflectance Spectroscopy
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Comparative of cost and time

Technique IRMS EA AACC Method NIRS-prediction
Parameter O13C 080 N content Ash content o13C" 5680 Ash N
Cost per sample 10€ 20€ 3€ 1.5€ 0.5€

Time <10 min <10 min <10 min =24 h =3 min
Equipment EA-IRMS EA Muffle furnace NIR spectrometer

*previously reported by Clark et al. 1995; Ferrio et al. 2001; Kleinebecker et al. 2009
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Affordable Phenotyping

— Platforms



50 km - 400 km |

Platforms

Araus et al. 2018 Trends Plant Sci..



Table 1

Comparative costs

Imaging costs involving vehicle, sensors, associated software and personnel in field experiments or in a robotized platform, for two scenarios of demand for phenotyping (offer or demand-limited) and, in the field, three
categories of vehicles (vectors) carrying sensors (automated or hand-held ground vehicle or unmanned aerial vehicle (UAV). Costs are expressed in US dollars per plot.day per year (field) or plant.day per vear (robotized

platform), with the principles of calculations in the panel “vector”. Costs of manpower are calculated per vear and plot.day or plant.day. Two scenarios are considered for field conditions: in scenario§ (offer Imited), the
demand for phenotyping exceeds the capacity of the system; in scenario 2 (demand limited) the demand represents a maximum of 4000 microplots per year.
Vector Sensors Manpower + training Maintenance Cost
imaging
Hypotheses for each Days of Throughput, uplot  Expected Investment k% Investment $ per  Equivalent $ year ' per plot day  $ year ! $ per plgt % per plot
scenario use or plant day ! duration, plot per day vector calculation, per year day.plofper  day per year
year ! year life 4 year life year
High throughput field Limited by availability of
experiments, 'offer equipment and personnel.
limited'
Auromated ground vehicle &0 1200 20 430 0.30 0.24 19564 0.2717 15000 0.2083 1.02
Hand-held ground vehicle 50 8OO 15 50 0.08 0.44 15553 0.3888 3000 0.0750 0.98
UAV 40 4000 2 10 0.03 0.09 24545 0.1534 2000 0.0125 0.29
High throughputfield Limited by the demand for
experiments, 'demand  microplot per year. 40,000
limited uplots year '
Automated ground vehicle 33 1200 20 430 0.54 0.44 12673 0.3218 15000 0.3750 1.67
Hand-held ground vehicle 50 BOOD 15 50 0.08 0.44 15553 0.3688 3000 0.0750 0.98
UAV 10 4000 2 10 0.13 0.38 17018 0.4255 2000 0.0500 0.98
Robotized indoor platform  Limited by availability of 270 1700 15 1000 0.15 0.02 103618 02257 15000 0.0327 0.42
equipment and personnel.
i Plant Science
e ks
[ —
Wit in cons-pificiom phenotyping” Oprimaring coste for differma seenaras
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Affordable platforms

10m-200m

Ground level

Araus & Kefauver, 2018 Curr. Opin Plant Biol.



Outline

Affordable Phenotyping

— Environmental characterization



Environmental characterization

Figure 1. Components of platform.

Table 1. Prices of the main components of the platform (source [53]).

» Price in £,
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Environmental characterization

n

https://via.farm/

Chameleon Soil Water Sensor

The Chameleon Soil Water Sensor measures how hard i is for plants to suck

water out of the soil and the data is displayed as coloursd lights

FullStop Wetting Front Detector

The FullStop Wetting Front Detector tells you how deep watsr moves into the soil
during and shortly after irrigation. It also captures 3 soil water solution sample
which can be extracted using a syringe

Measuring Nutrients

Nitrate test strips are used to indicate the amount of nitrate moving in the rcot
zone. Nitrate (the main form of soluble nitrogen in soils) moves with water and is

asily leached from the soil by over-irigation

Measuring Salt

Focket EC meters (Elzctrical Conductivity) are used to show whether saltis
building up in the root-zone (under irrigation) or being continually flushed ocut (over-

rrigation)




Outline

Affordable Phenotyping

— Data curation and processing



MosaicTool (Plugin for FIJI)
Semi-automatic image Allows for the
segmentation for UAV plant extraction and

: : rocessing of
phenotyping studies. » 000 plot?per

hour with
guality control
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CIMMYT Maize Scanner for RGB field-
phenotyping (released at http://github.com/george-
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based

Calculates a number of RGB based indexes for estimating disease impacts, crop vigor,
LAI, biomass at the leaf and canopy scale, including Breedpix (GA and GGA), Triangle
Greeness Index (TGIl), and Normalized Green Red Difference Index (NGRDI)



RGB, Green Area, Greener Green Area

MLN plot score 3.0

NS = —~

Maize Leaf Plot RGB

NGRDI (vigor index)

MLN plot score 4.0

Maize Leaf Plot RGB GA (healthy pixels) GGA (very healthy pixels) NGRDI (vigor index)

u\ Kefauver et al.



The approach of training deep learning models on
iIncreasingly large and publicly available image datasets
presents a clear path toward smartphone-assisted crop
disease diagnosis on a massive global scale.
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Outline

Affordable Phenotyping

— Data integration



Data Integration

Hardware Embedded Agents

Storage Database

TV / Mobile
Applications

Figure 16. Scheme platform.

Internet

AN\

u Sensors [mDP1

Combining Multi-Agent Systems and Wireless Sensor
Networks for Monitoring Crop Irrigation

33 User Interface

Gabebel Vilarsubla - Jusn £, D Pas |, Dandel W, D La iglesia *and Javier Bajo Figure 18. Remote control platform of the irrigation system.



Data integration

Real-Time
Database GPS

/ : I HeatMap
Mobile-Enabled Website Visualizations

00K AGGREGATE
http/lrs-collective.appspot.com

0DK COLLECT

0DK Sensors/laT
Wireless Sensor Networks (WSN)

Araus & Kefauver, 2018 Curr. Opin Plant Biol.



EARTH ENGINE

GlobCover, NLCD....

Atmospheric Data Weather Climate DEMOGRAPHIC
CLIMATE AND WEATHER WorldPop/Disease

Araus & Kefauver, 2018 Curr. Opin Plant Biol.



Conclusions

Affordable alternatives exist for all
the phenotyping components
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“Shovelomics”

Root crown evaluzktlon

E \
W Branchmg/length of crown
... root laterals (CB/CL)

Branching/ Ienéfh of brace root | =
laterals (BB/BL) Number of crown roots (CN

. B Y
. . : =

Trachsel et al. 2011 Plant and Soil 341: 75-87



Figure 1. A, Classic shovelomics scoring board to
score the angle of maize roots with the soil tissue. B, An
example to score rooting depth and angle in common

bean.

Figure 2. |, Imaging board on the
example of a maize root. The experi-
ment tag is used 1o caplure an exper-
iment number, and the scale marker
allows the correction of camera tilting
and transtorming image coordinates
into metric units. 11, Camera mounted
on a tripod placed on top of the
imaging board coated with black-
hoard paint. Note that images
were taken with protection against
direct sunlight not shown in the im-
age. ll, Example of the segmentation
of the original image into a binary
image and then into a series of im-
age masks that serve as input 10 es-
timate traits for monocot and dicot
roots, The sample is that of a maize
root, 40 d after planting at the
URBC. IV, The imaging pipeline for
dicot roots and sparse  monocot
roots: Original image on the imaging
board {a), denved distance map
where the lighter gray level repee-
sents a larger diameter of the imaged
abject (b), medial axis includes loops
(), and loop RTP with a sample of
the root branching structure (d), Colors
are randomly assigned to each path,
The sample is that of a cowpea oot
approximately 30 d after planting at
the URBC

\\

Experiment Tag

Scale Marker 1

Root Crown

(a)

<

Excised Root

()

o)y 40

(@)

(V)

Bucksch et al. 2014 Plant Physiol.
166:470-486
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Applications and limitations

Table 2. Applications and limitations of common sensors mounted on field buggies.

o8

Sensor Type

Applications

Limitations

RGB Cameras

Imaging canopy cover and canopy colour. Colour information can be used
for deniving information about chlorophyll concentration through greenness
indices. The use of 3D sterco reconstruction from multiple cameras or
viewpoints allows the estimation of canopy architecture parameters.

No spectral calibration, only relative measurements. Shadows and
changes in ambient light conditions can result in under- or over-exposure
and limit automation of image processing.

LiDAR and time of flight sensors

Canopy height and canopy architecture in the case of imaging sensors
(¢.g.. LIDAR). Estimation of LAL volume and biomass. Reflectance from
the laser can be used for retrieving spectral information (reflectance in
that wavelength).

Integration/sy nchronization with GPS and wheel encoder position
systems is required for georeferencing.

Spectral sensors

Biochemical composition of the leaf/canopy. Pigment concentration,
water content, indirect measurement of biotic/abiotic stress,
Canopy architecture/LAl with NDVL

Sensor calibration required.  Changes in ambient light conditions
influence signal and necessitate frequent white reference calibration.
Canopy structure and camera/sun geometries influence signal.  Data
management is challenging.

Fluorescence

Photosynthetic status, indirect measurement of biotic/abiolic stress.

Difficult to measure in the field at the canopy scale, because of the
small signal-to-noise ratio, though laser-induced fluorescence transients
(LIFT) can extend the range available, while solar-induced fluorescence
can be used remotely.

Thermal sensors

Stomatal conductance. Water stress induced by biotic or abiotic factors,

Changes in ambient conditions lead 1o changes in canopy temperature,
making a comparison through time difficult, necessitating the use of
references, Difficult to separate soil temperature from plant temperature
in sparse canopies, limiting the automation of image processing. Sensor
calibration and atmospheric correction are often required.

Other  sensors: clectromagnetic
induction (EMI), ground penetrating
radar (GPR) and electrical resistance
tomography (ERT)

Mapping of soil physical properties, such as water content, electric
conductivity or root mapping.

Data interpretation is challenging. as heterogeneous soil properties can
strongly influence the signal.

Deery et al. 2014 Agronomy



